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Most rheological and turbulent flow models for non-Newtonian fluids are nonlinear and deciding 
which one best represents the experimental evidence is not always obvious. Goodness-of-fit of 
non-linear models is often evaluated on the basis of root mean squared error (RMSE) or coefficient 
of determination (R2) which can be misleading and inappropriate for non-linear models. Pipe test 
data from the Flow Process and Rheology Centre, Cape Peninsula University of Technology were 
used to compare the power law, Bingham plastic, Herschel-Bulkley and Casson rheological models 
for 5% carboxymethyl cellulose (CMC) laminar data, and the Dodge and Metzner, Darby, 
Torrance, Wilson & Thomas, Slatter and El Emam models for bentonite and sludge turbulent flow 
data. The models were compared on the basis of RMSE, R2 and the Akaike Information Criterion 
(AIC). The RMSE and R2 criteria were useful in ranking models, but did not always distinguish 
between them, whilst the AIC approach clearly indicated the best model(s) in the candidate group. 
 
KEY WORDS: Akaike information criterion (AIC), model selection, non-Newtonian, RMSE, R2, 
turbulent flow 
  

1. INTRODUCTION 

Much experimental work in turbulent pipe flow of non-Newtonian fluids has been 
reported over the years, but fundamental understanding is not complete. There are no 
generally applicable theories, and suitable mathematical and computational models are 
still under development [Rudman et al. (2004)]. As a result, the different analytical, semi-
empirical and empirical correlations (explicit and implicit) that have been proposed to 
predict turbulent pressure losses [see for example Dodge & Metzner (1959), Heywood & 
Cheng (1984), Wilson & Thomas (1985), Slatter (1994), El-Emam et al. (2003), Gao & 
Zhang (2007)] continue to be used. Generally these models were developed for a specific 
type of material and/or are based on a particular set of results, from which the 
coefficients of the correlation are derived. Rarely have these been corroborated by using 
independent data and consequently they are not universally applicable [Slatter (1994)]. 
The turbulent flow models use rheological parameters derived from laminar flow data, 
assuming these to still hold at the much higher turbulent wall shear stresses, which may 
not always be true. Also, extending laminar rheology to turbulent flow shear rates results 
in different wall shear stresses for different rheological models. This can greatly 
influence turbulent flow predictions [Slatter (1994), van den Heever et al. (2014)]. 
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It seems sensible then to identify the most appropriate rheological model for the material 
and to compare experimental turbulent flow results with the predictions of several 
different correlations, most of which are nonlinear. Choice of model should be based on 
its general applicability, not just goodness-of-fit. This can be done by applying some 
criterion that additionally accounts for model complexity. Any such criterion, however, 
says nothing about the functional form of the candidate models – it cannot identify 
whether or not a better model exists [Myung (2000), Burnham & Anderson (2002)].  
 
Generally two methods are used to determine model parameters, maximum likelihood 
estimation (MLE) and least-squares estimation (LSE). MLE is a standard technique to 
estimate parameters in statistics and requires that the distribution the data follows be 
known (or assumed). LSE is associated with the statistical concepts of linear regression, 
residual sum-of-squares (RSS), coefficient of determination (R2) and root mean squared 
error (RMSE). It does not require any distribution assumption and is useful in 
summarising experimental data, but does not have the properties of MLE. It is usually 
regarded as the approach used with linear regression models, not as a general parameter 
estimation method [Myung (2003)]. In LSE, parameter values are found that most 
accurately describe the data (how closely the model fits the data) by minimising RSS, 
whereas MLE finds the parameters that are most likely to have produced the data. 
However, when the data are (or are assumed to be) independent and to follow a normal 
distribution with constant variance, then LSE gives the same parameter estimates as MLE 
for linear and nonlinear models [Burnham & Anderson (2002; 2004; 2011), Myung 
(2003), Symonds & Moussalli (2011)]. 
 
To identify the “best” model once the parameters have been found, several criteria are 
used [Myung (2000), Spiess & Neumeyer (2010)]. Here, only three of these are 
considered, namely RMSE, R2 and the Akaike information criterion (AIC). MLE is a 
prerequisite for the AIC. These criteria, described in more detail below, include only the 
number of model (regression) parameters p to account for model complexity. In this 
paper only these criteria are compared. Experimental errors are assumed to follow the 
normal distribution and the merits of the various rheological and turbulent flow models 
are not considered. 
 

2. BACKGROUND AND METHODS 

2.1 ROOT MEAN SQUARED ERROR 

Root mean squared error (RMSE) is an estimate of the standard deviation of the random 
component in the observed data, and is defined as [Myung (2000)]: 

ܧܵܯܴ ൌ 	ඨ
ܴܵܵ

ሺܰ െ ሻ݌
; ܴܵܵ ൌ ෍ሺݕ௜ െ ො௜ሻଶݕ

ே

௜ୀଵ

(1) 

 
where N = number of data points, yi = experimental values, ŷi = model (predicted) values, 
p = number of regression parameters and (N-p) = number of degrees of freedom of the 
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model. RMSE is minimised during parameter estimation, so smaller values imply a better 
model fit to the data. 
 

2.2. COEFFICIENT OF DETERMINATION 

The coefficient of determination (R2) is often used to quantify how well a model fits a 
data set and will usually have a value between 0 and 1. It is useful in linear analysis as it 
indicates how much of the variance in the data is due to the fit, but in nonlinear analysis 
it doesn’t have this interpretation since the total sum of squares (TSS) does not equal the 
regression sum of squares plus the residual sum of squares, as it does in linear analysis. 
R2 can be improved by adding independent model parameters to get a better fit, but this 
does not necessarily improve the model. A high value for R2 can be misleading and 
means only that the fitted curve came close to the observed data points, not necessarily 
that the model is good or meaningful. What value of R2 distinguishes a “good” from a 
“bad” model is not defined, so R2 gives no insight for choosing the best model [Burnham 
& Anderson (2002), Spiess & Neumeyer (2010), GraphPad software (1995-2015)]. R2 is 
defined as [Spiess & Neumeyer (2010)]: 

ܴଶ ൌ 	1 െ
ܴܵܵ
ܶܵܵ

; ܶܵܵ ൌ ෍ሺݕ௜ െ ത௜ሻଶݕ
ே

௜ୀଵ

(2) 

 

where ȳi = average of experimental values. To account for the number of parameters in 
the model the adjusted R2 value, R2

adj, is used, as [Spiess & Neumeyer (2010), GraphPad 
Software (1995-2015)]: 
  

ܴ௔ௗ௝
ଶ ൌ 1 െ

ሺܰ െ 1ሻܴܵܵ
ሺܰ െ ሻܶܵܵ݌

(3) 

 

R2 will be negative if RSS > TSS which can happen if the model fits the data very poorly.  
 

2.3. AKAIKE INFORMATION CRITERION 

Akaike’s information criterion (AIC) is an “information – theoretic” approach based on 
Kullback-Leibler (K-L) information. Akaike (1974) found the link between K-L 
information and the maximised log-likelihood, which enabled the definition of his 
information criterion as [Akaike (1974), Burnham & Anderson (2002; 2004; 2011)]:  
 

ܥܫܣ ൌ െ2 ݈݊ሺܮܯሻ ൅ 2݇ (4) 
 

where ML = maximum likelihood estimate and k = number of estimable parameters in the 
model. AIC is a numerical value or metric that enables simultaneous comparison of 
proposed models. It is an estimate of how much better the best approximating model 
(lowest AIC value) is than the next best models in a set, and favours less complex models 
i.e. those with fewer parameters. AIC does not identify the best fit model, but for a given 
set of data determines a trade-off between variance and bias for the fitted parameters of 
each model. Parameter estimation for all the models must always be done with the same 
data set. The AIC value for each proposed model is calculated using either its ML or, if 
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for all the models, errors follow a normal distribution with constant variance, the least 
squares regression statistic RSS. In this case k = (p + 1) (to account for model variance, 
2) [Burnham & Anderson (2002; 2004; 2011), Symonds & Moussalli (2011)] and the 
AIC is given by: 
 

ܥܫܣ ൌ ܰ ݈݊ ൬
ܴܵܵ
ܰ
൰ ൅ 2݇ (5) 

 

Additionally, when N is small relative to k (taken as N/k < 40), a second order bias 
correction term should be added to the AIC value to give a corrected value, AICc as 
[Burnham & Anderson (2002)]: 
 

௖ܥܫܣ ൌ ܥܫܣ ൅
2݇ሺ݇ ൅ 1ሻ
ܰ െ ݇ െ 1

(6) 

 

Since AICc tends to AIC as N increases it is recommended to simply use Eq. (6) 
consistently for all the models considered [Burnham & Anderson (2002)]. Individual 
AICc values do not help to rank models and implicitly contain constants (not shown in 
Eqs. (4) to (6)) which depend on N, although not on the fitted model. AICc differences 
account for these, and are the key to interpretation of the AICc values and ranking of the 
models [Burnham & Anderson (2011)]. The differences are calculated as: 
  

∆௜ൌ ஼௜ܥܫܣ െ ௖௠௜௡ܥܫܣ (7) 
 

where AICcmin is the smallest of the AICc values of the proposed models. Thus for the 
“best” model i = 0 and all other i are positive. The larger i is the more unlikely it is 
that model i is the best approximating model. As a rough guide, models with i ≤ 2 are 
effectively equal to the best model and have substantial support, models with i up to 
about 7 have less support but are plausible and should be considered. Models with i > 
about 9 to 11 have little support relative to others in the set and those for which i > 14 
are probably not plausible and can be discarded [Burnham & Anderson (2002; 2011), 
Symonds & Moussalli (2011)]. Two additional quantities can be obtained from the i 
values [Burnham & Anderson (2002)]. The first of these is the evidence ratio ERi for 
model i: 

௜ܴܧ ൌ 	
݁
൬ି
∆್೐ೞ೟
ଶ ൰

݁
൬ି
∆೔
ଶ ൰

; ∆௕௘௦௧ൌ 0 (8) 

 

which defines how much more likely the best model is than model i. It can also be used 
to compare any two models in the set. The second is the Akaike weight wi for model i: 

௜ݓ ൌ 	
݁
൬ି
∆೔
ଶ ൰

∑ ݁ቀି
∆ೝ
ଶ ቁோ

௥ୀଵ

ݎ݋݂ ܴ ݏ݈݁݀݋݉ (9) 

 

wi lies between 0 and 1 and gives the probability that model i is the best approximating 
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model for the given data. The wi values must sum to 1 [Burnham & Anderson (2002), 
Symonds & Moussalli (2011)]. Even if all candidate models are “bad” a “best” model 
will be identified - the analyst must ensure the use of meaningful models. Examples of 
the use of AIC versus other measures can be found in Burnham & Anderson (2002), 
Thayer et al. (2007), Spiess & Neumeyer (2010) and Symonds & Moussalli (2011). 
 

2.4. EXPERIMENTAL FACILITIES, TEST MATERIALS AND DATA 

The data of the examples presented here were all obtained in the pipe test loops of the 
Flow Process and Rheology Centre (FPRC) of the Cape Peninsular University of 
Technology (CPUT). Details of these loops and the estimated experimental errors for 
each are summarised in van den Heever (2013). In all the tests, flowrate was set and 
pressure gradient measured. Experimental data used to evaluate the model selection 
criteria are for carboxymethyl cellulose (CMC), bentonite and sludge in pipes ranging 
from D = 0.013 to D = 0.211 m at 8V/D values from 20 to 1740 s-1 (V = average velocity 
(m/s), D = pipe diameter (m)) and Metzner-Reed Reynolds numbers (ReMR) between 8 
and 79650. 
 

2.5. RHEOLOGICAL MODELS 

The Herschel-Bulkley, Bingham plastic, power law and Casson rheological models were 
used. The rheological parameters of each were determined using MS Excel® by iterating 
the appropriate flow equation to find wall shear stress w (in Pa) at each experimental 
8V/D value, whilst simultaneously minimising RSS over all the test points. In each 
analysis different initial values were used and convergence to the same final values 
checked, to be reasonably sure of a global solution. RMSE, R2, R2

adj, AICc, i, ERi and wi 
were calculated for each model according to Eqs. (1) to (3) and (5) to (9). The 
rheological and flow equations for these models are summarised in several books, for 
example Chhabra and Richardson (2008), and in van den Heever (2013). 
 

2.6. TURBULENT FLOW MODELS 

To evaluate the model selection criteria for turbulent flow, seven (arbitrarily chosen) 
models were used with selected data for Bingham plastic (as per §2.5) bentonite 
suspensions and sludges. These seven were the logarithmic and Blasius correlations of 
Dodge & Metzner (1959), and the models of Torrance (1963), Wilson & Thomas (1985), 
Slatter (1994), El Emam et al. (2003) and Darby (as given in Chhabra & Richardson 
(2008)). Iteration was done for the implicit models to find w at each experimental 8V/D 
value, after which the selection criteria metrics were calculated. 
 

3. RESULTS AND DISCUSSION  

3.1. RHEOLOGICAL MODELS 

Fig. 1 shows the rheological model fits to a set of 5% CMC data. The equations of these 
fits are listed in Table 1(a). 
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Figure 1 Rheological model fits to 5% CMC pipe laminar data (test pipe diameters: □ 0.0577 m, ◊ 
0.0812 m, ∆ 0.1506 m, ○ 0.2110 m) 

Clearly the Bingham plastic fit is not appropriate, but the differences between the other 
models are not easy to quantify visually. The power law and Herschel-Bulkley models 
look similar and appear to fit the data well, while the Casson model has a reasonably high 
(unexpected) yield stress and does not fit the data as well in the lower 8V/D region. 
Referring to Table 1(b) the RMSE and R2

adj values rank the models as would be expected 
for this material. The R2

adj values are all quite high and similar. They suggest, as do the 
RMSE values, that the Bingham plastic and Casson model fits are not as good as the 
power law and Herschel-Bulkley fits, but can’t quantify this observation. Comparison of 
the RMSE and R2

adj values for the power law and Herschel-Bulkley models shows the 
small effect of (N-p) as suggested by Spiess & Neumeyer (2010). The AIC related values, 
however, give a clearer picture. The i values immediately require the Bingham plastic 
and Casson models to be discarded. The Herschel-Bulkley model could be considered, 
but its ERi value reveals it has considerably less empirical support than the power law 
model, with only a 0.2% probability of being the best model, while the power law model 
has a 99.8% probability of being the best model in the set, for the given data. This 
example clearly illustrates the ability of the AIC method to discern between models. 

Table 1 

5% CMC results (a) fitted rheological model parameters (b) model selection criteria values 

(a) 

Model Fitted parameters 

Power law ߬௪ ൌ ሶߛ0.6915 ଴.଻ଷଵ

Herschel-Bulkley ߬௪ ൌ 0.47 ൅ ሶߛ0.6272 ଴.଻ସ଺ 
Casson ߬௪଴.ହ ൌ 3.11଴.ହ ൅ ሺ0.0779ߛሶሻ଴.ହ 
Bingham plastic ߬௪ ൌ 1.0 ൅ ሶߛ0.1514  
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(b) 

 Model k RMSE R2
adj AICc i wi ERi 

1 Power law 3 0.6658 0.9988 -56.7 0.0 0.998 1.0 
2 Herschel-Bulkley 4 0.7179 0.9986 -44.2 12.5 0.002 519.1 
3 Casson 3 2.4368 0.9837 137.9 194.6 0.0 1.8E42 
4 Bingham plastic 3 4.2767 0.9499 222.3 279.0 0.0 3.8E60 

 
3.2. TURBULENT FLOW MODELS 

Fig. 2(a) shows the rheological model fits to pipe test measurements for a 9% bentonite 
sample. They are similar, except to some extent the power law fit at higher 8V/D values, 
and cannot easily be differentiated visually. The AIC approach (§2.3) confirmed the 
models are similar and any one of them could be used, with i values of 0 to 3.2 and 
corresponding Akaike weights of 0.45 to 0.09, indicating that no single model is 
particularly favoured. This probably results from the fact that there are not many data 
points at low 8V/D values, and agrees with the findings of Malkin et al. (2004). The 
Bingham plastic rheology (yield stress y = 32.19 Pa, Bingham viscosity K = 0.0100 Pa.s) 
was selected for use in the turbulent flow predictions. 

 

(a) (b) 

Figure 2. (a) Rheological model fits to 9% bentonite pipe data (b) Dodge & Metzner, Slatter and 
Wilson & Thomas turbulent model flow predictions (test pipe diameters: □ 0.0577 m, ◊ 0.0812 m, 

∆ 0.1506 m) 

Table 2 gives the selection criteria for turbulent flow model predictions, three of which 
are shown in Fig. 2(b). All the criteria rank the models identically, with the first three 
models having quite similar RMSE and R2

adj values. The AIC values though indicate that 
only the Dodge and Metzner correlations (logarithmic and Blasius form) should be 
considered, with probabilities of being the best model of 95.54 and 4.42% respectively. 
The next best model, that of Slatter, has only a 0.04% probability of being the best 
model, which isn’t what Fig. 2(b) suggests. The Wilson & Thomas model, for example, 
is ranked fifth with an average error of -15% (-6 to -23%), but within this group has no 
chance of being considered a suitable candidate. As indicated by the ERi values the 
empirical support for the Dodge & Metzner model is overwhelmingly greater than it is 
for the for Wilson & Thomas model. Such information is useful, but can’t be inferred 
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from Fig. 2(b). Note that these example results are based on data over all pipe sizes. 

Table 2 

Turbulent flow model selection criteria results for 9% bentonite (Bingham plastic rheology) 

 Model k RMSE R2
adj AICc i wi ERi 

1 D & M (log)@ 
@

2 5.2538 0.9680 122.8 0.0 0.9554 1.0 
2 D & M (Blasius) 2 5.7219 0.9620 128.9 6.1 0.0442 21.59 
3 Slatter 2 6.5200 0.9507 138.3 15.5 0.0004 2.4E03 
4 Darby 2 10.814 0.8643 174.8 52.0 0.0 1.9E11 
5 Wilson & Thomas 2 14.257 0.7642 194.7 71.9 0.0 4.1E15 
6 Torrance 2 16.046 0.7013 203.2 80.4 0.0 2.9E17 
7 El Emam et al. 2 27.636 0.1140 242.3 119. 0.0 9.0E25 

(@ D & M = Dodge & Metzner) 
 
The results shown in Fig. 3 are the predictions of the turbulent flow models (except the 
Dodge & Metzner Blasius form, omitted for clarity) for a Bingham plastic sludge (y = 
8.19 Pa, K = 0.0138 Pa.s). They are included to provide an example in which the models 
all follow the shape of the experimental data well, but over- or under-predict by varying 
amounts. 

 

Figure 3. Wilson & Thomas, Darby, El Emam, Dodge & Metzner, Slatter and Torrance turbulent 
model flow predictions for a 5% sludge (test pipe diameters: □ 0.027 m, ◊ 0.052 m, ∆ 0.063 m) 

The Wilson & Thomas, Darby and El Emam results are quite tightly grouped around the 
experimental values for both diameters. The Slatter and Dodge & Metzner predictions are 
similar and over-predict wall shear stress by about 20% on average. The Torrance model 
over-predicts the shear stresses by just over 33% on average. These groupings are clear 
from the RMSE and R2

adj values given in Table 3, which suggest that the first three 
models are essentially as good as each other, the Dodge & Metzner and Slatter models 
are less accurate but could be considered, and the Torrance model is just too inaccurate. 
However, none of the models appears to be completely implausible and the choice, 
especially between the first three ranked models, is not clear-cut. Use of the AIC provides 
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greater insight. In this case the i values indicate the Wilson & Thomas model to be the 
best, but also that the Darby and El Emam models must be considered. Their Akaike 
weights and the evidence ratios though show the Darby and El Emam models to be much 
less likely (1.4 and 0.5% respectively) than the Wilson & Thomas model which is 98.1% 
likely to be the best model. The other models can all be discarded, but note that using 
individual evidence ratios shows for example that the empirical support for the Dodge & 
Metzner model is about 12 times that for the Slatter model, or for the Darby model is 2.9 
times that for the El Emam model. Such information is useful, but is not at all evident 
from the plots. 

Table 3 
Turbulent flow model selection criteria (5% Bingham plastic sludge) 

 Model k RMSE R2
adj AICc i wi ERi 

1 Wilson & Thomas 2 3.0271 0.9300 48.0 0.0 0.981 1.0 
2 Darby 2 3.7462 0.8929 56.5 8.5 0.014 71.0 
3 El Emam et al. 2 3.9501 0.8809 58.6 10.6 0.005 205.0 
4 D & M (Blasius) 2 6.8371 0.6431 80.6 32.6 0.0 1.2E07 
5 D & M 2 6.9500 0.6312 81.2 33.2 0.0 1.7E07 
6 Slatter 2 7.8911 0.5246 86.3 38.3 0.0 2.1E08 
7 Torrance 2 12.3871 -0.172 104.3 56.4 0.0 1.7E12 

 
5. CONCLUSIONS 

Rheological and turbulent flow models for non-Newtonian fluids are generally non-
linear, so in fitting these models to observed data to determine parameters or evaluate 
how good they are, use of the R2 statistic is inappropriate. RMSE can be used to rank 
models, but doesn’t give much insight. The Akaike information criterion has been 
presented as an alternative to use when fitting experimental data or evaluating existing 
correlations for turbulent flow. Sample data from tests conducted in the pipe loops of the 
FPRC (CPUT) were used to demonstrate the utility of this criterion and how it allows 
proper comparison of different models in a group, for a given data set, on a theoretically 
sound basis. Its use enables the best model in the group to be inferred, but does not 
remove from the analyst the responsibility of ensuring the candidate models are 
functionally appropriate in the first instance. 
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